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Abstract

The interdisciplinary natural problems are com-
monly solved by using mathematical models in
prey predator interplay. In this work we propose
fuzzy stochastic prey predator model with stage
structure. The model consist prey, immature,
mature population. Firstly, we have constructed
the crisp model with considering some
assumptions and notations. It is transformed to
the fuzzy model. All the controlled biological
parameters are taken in imprecise nature and
considered as triangular fuzzy numbers. We adopt
the graded mean integration formula for the
defuzzification of the fuzzy prey predator model to
get the solution easily. Then we form it in
stochastic model with the help of Markov chain
process and also investigate the persistence in
mean and extinction of the system. The positivity,
boundedness, equilibria, global stability of the
interior equilibrium point and Hopf bifurcation
analysis are discussed for the proposed model. We
use MATLAB package for numerical experiment.
We represent the phase space trajectories for
different values of parameters in crisp, fuzzy
environment. Also, we have shown graphically the
prey predator limit cycle in stochastic. The
evolution in time of the predator and of the prey
with different noise is presented graphically. The
bifurcation scenarios are presented with the help
of MATCONT packages. Lastly, we describe the
sensitivities of the controlled parameters.
Keywords: Density dependent effect, Triangular
Fuzzy Number, Graded Mean Integration Value,
Stochastic model, Hopf bifurcation
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1. Introduction

Prey predator dynamic is the important chapter in
the mathematical ecology, basically for our
understanding of interacting populations in the
environment. There is huge diversity of the plants,
insects and animals in their life histories. In recent
years, researchers focus on evaluating population
and interaction among them. At first Lotka and
Volterra introduced the predator prey model [17,
20, 24, 32, 40] and they have interested many
researchers in ecology. Species carry on their life
time through several life stages such as immature
and mature stages in the natural world. So,
predator-prey model with stage structure [1-3, 5,
10, 12, 15, 16, 25, 26, 33, 34, 48, 51-53, 55] is more
adequate. Bai et al. [1] investigated the stability
and Hopf bifurcation for a predator-prey model
with additional food for predator. The dynamics
predator prey model with stage structure on both
species anti predator behavior was proposed by
Mortoja et al. [31]. In their work they discussed
the periodic oscillation of adult predator
population and described the bifurcation diagram
for the parameters. A prey predator model with
stage structured for predator population and
harvesting for mature predator population has
been investigated by Chakraborty et al. [4]. In this
article we analyze the dynamic model of prey
predator system. When the prey cannot fulfill the
demand for food of predator, the predator looks
for alternative source of food [19, 22, 46, 47]. In
proposed model the parameters and initial
conditions are considered as crisp or fixed. The
experimental variables and parameters may be
varied in real world system for our error look out.
Fuzzy sets and fuzzy logic is one of the important
tool to consider it properly. Chang and Zadeh [6,
54] first introduced the idea of fuzzy derivative.
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Kalev et al. [21] first discussed the concept of
differential equations. With the help of
generalized Hukuhara derivative [36, 39, 41, 50]
the existence and the uniqueness of solution for
fuzzy initial value problems were studied by
Villamizar-Roa et al. [49]. Guo et al. [18] proposed
the oscillation of delay differential inclusions and
fuzzy biodynamics model. Das et al. and Mahato et
al. [8] investigated the prey predator model in
controlling disease with prey refuge under the
fuzzy environment. They discussed the global
stability analysis and bifurcation analysis of the
model. They also explained the entire figure in
crisp environment and fuzzy environment. Many
researchers studied the model for species under
fuzzy environment [37, 38] and used fuzzy
parameter [35] to discuss their work.

The parameters involved in the mathematical
models on prey predator model discussed are
crisp in nature and also it is transformed to fuzzy
model. We use graded mean integration technique
[28] to transform the fuzzy model into the
defuzzified model. All the biological parameters
are taken as triangular fuzzy number. As real life is
full of randomness and stochasticity, we have
transformed crisp model as stochastic model.
Many researchers have investigated the stochastic
models with white noise perturbations, refers to
[3, 13, 14, 23, 27]. Das et.al [7] described a prey
predator model in case of disease transformation
via pest under uncertainty. They explained crisp
model, fuzzy model, defuzzified model and
stochastic model with white noise in their research
work. Das et al. [11] proposed the stochastic prey
predator model with additional food. In his work
they showed the perturbation with white noise for
prey’s growth rate and predator’s death rate. A
stochastic prey predator model with time
dependent delay was investigated by Dai et al. [9].
They discussed the positivity, global solution and
stochastically boundedness of the model. They
also investigated the persistence in mean and
extinction of the system. Schwartz et al. [45]
proposed a population dynamical model. They
included the influence of delay on the rate of noise
induced switching between stable states and noise
induced extinction in research work. A theory on
the ecological web testing the effect of
environmental noise on population was studied by
Ripa et al. [43]. The substance of randomly
changeable in environment can fluctuate birth
rates, death rates, carrying capacity and all other
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parameter involved in model was described by
May et al. [30].

We make up the remaining work in several
sections and subsections. We have some basic
assumptions and notation for using our work.
Some useful preliminary concepts are discussed.
We divide model formulation section by the
subsection of crisp model, fuzzy model, defuzzified
model and stochastic model. Positivity of the
model, boundedness of the system, equilibria, and
stability analysis are investigated in theoretical
study section. Also, Hopf bifurcation analysis of
the proposed model is discussed. Main findings of
analytical results are verified and described in
numerical results section. Some numerical
examples are in the section of numerical results.
We describe the sensitivities of the different
parameters and draw the phase portrait of the
system in both crisp and fuzzy environment. The
conclusion portion is discussed in last section.

2, Assumptions and Notation

We use some basic assumptions and notation in
our work.

Assumptions:

i. Prey and Predator both are present in the

population.

ii. Predator population is divided into two parts,
immature predator and mature predator.

iii. Only prey population is reproducing
according to logistic law.

iv. Only mature predator has maximum growth

rate due to alternative source food.

There is natural death for both predators.

vi. There is conversion factor from prey
population to mature predator population.

vii. Immature predators reproduce from mature

.

predators.
viii. Immature predators translate to mature
predators.
ix. There is density dependent effect to the focal
prey population
x. There is no natural death rate for prey
population.
Notation:
A Fuzzy set
ni(x) Membership function for the fuzzy set
A
G(A) Graded mean integral value of A
L(x) Left shape function of 4

J. Sci. Eng., 2022, 2(2)26
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R(x)  Right Shape function of A

w Degree of optimism

x(t) Prey population

y(t) Immature predator population
z(t) Mature predator population

% Intrinsic growth rate of prey population
k Carrying capacity
a Predation rate for prey population
s Reproduction rate of mature predator
B Translation rate from immature
predators

to mature predators
& Natural death rate of immature predators
m Conversion factor rate from prey to
mature

predator
& Natural death rate of mature predator
7 Maximum growth rate of mature
predators

3. Preliminaries

Fuzzy Set: Let the collection of the object be X
and x be the elements of X. Then a fuzzy set 4 in X
is a set of order pairs 4 = {(x, 7 (x)): xeX}, where
1z (x) is called the membership function of x in A
which maps X to [0,1].

Triangular Fuzzy Number (TFN): A
triangular fuzzy number is specified by the
ordered triplet (a, b, ¢) (Fig. 1) and defined by its
continuous membership function pz(x): X— [0,1]
as follows:

=2 ffa<x<bh

b—a
1 ifx=0b

() =1 .
Ha X ifb<x<c

c=b
0 otherwise

walx) 4

Fig. 1: Triangular Fuzzy Number

Operations of Triangular Fuzzy Number:
The following are the four operations that can be
performed on triangular fuzzy numbers: Let 4 =
(ay, az, az) and B= (b, b, , b;) then,

27 J. Sci. Eng., 2022, 2(2)

i. Addition: A + B = (a,+b,, a;+b,, as+b;),
ii. Subtraction: A-B = (a;- b3, a,- by, as- by),
iii. Multiplication: A x B = (min (a,b,, a,bs,
asby, asbhs), a,b,, max (a;b;, a;bs;, asby,
a3b3)L
iv. Division: A/P = (min (a,/by, a,/bs, as/b;,

az/b3), ap/b,, max(a,/b,, a;/bs, az/bs,
as/bs)), b; # 0,1=1, 2, 3.

Graded Mean Integration Representation
of Fuzzy Number: The graded mean integral
value of the fuzzy number A is defined as

N J'lx{(l—w)L‘l(x)+wR‘1(x)}dx
G(A) == 1
Jo xdx

=2f x{(1 = w)L™(x) + wR™(x)}dx

where, L(x) and R(x) are the left and right shape
functions of A.

GMIV Formula for Triangular Fuzzy
Number (TFN): Here we discuss the GMIV
formula [28]. For the TFN A, the left and right

x—aq

shape functions are respectively, L(x) = and

R7Y(x) = a;z- (az-a,) x.

az—a;

Therefore, L™1(x) = a,+ (a,-a;) x and

Now, GMIV of A

=2 [ x{(1 = w)L (%) + wR™(x)}dx

=2 x{(1 = w)la; + (@ — ay) x] + wla; -
(a3 - az)x]}dx

= 2[(1-w) {% + @} + W{af _ ((13;112)}]

= 33 [(1—=w)a; + 2a, + was]
Thus, G(A) = < [(1 - w)a, + 2a, + was].

If A = (a,a,,a3) is a triangular fuzzy number,
then, G (A) reduces to the real number a.

4. Model Formulation

Case-I: Crisp Model

In this paper of prey predator system, we fit three
different species; they are the prey, the immature
predators and the mature predators. We denote
x(t) as the population size of prey, y(t) as the
population size of immature predators and z(t) as
the population size of matured predators at any
time t. Therefore, in order to describe the
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dynamics of this model mathematically, the
following hypotheses are adopted.

a) Let y be the intrinsic growth rate of the prey
population which grows logistically and let k
be the environmental carrying capacity.
According to mass action law, the matured
predator’s population attacks the prey
population with the predation rate a (>0).

b) Let s be the matured predators population
reproduction rate and B (>0) be the
translation rate from the immature predator’s
population to matured predators’ population.
Also, let the natural death rate for the
immature predators be &, (>0).

c¢) Let the conversion factor from prey
population to the matured predator’s
population is m and again &,(>0) be the
natural death rate of the matured predators.
Also, let us assume that p is the maximum
growth rate due to alternative source of food.
The density dependent effect to the focal prey
population is represented by the term
(1 —x/k). If the focal prey population x
increases, the predator uses less amount of
alternative source. The consumption of
alternative source tends to zero when x
approaches k.

Under the above assumptions, the prey predator
model can be represented by the following
differential equations

%: yx(l—%)—axz

d.
= sz—By—ey

%: mxz+ By —¢&,z+pz(1 —x/k) (1)
where, the initial conditions are x(0) = 0,y(0) >
0,z(0) = 0. Table 1 presents units or dimension of
the variables or parameters.

Table 1 Units or dimensions of the variables and para-
meters

Variables/ Units/ Variables/ Units/
parameters dimensions ~ parameter dimension
s
x(t) Mass s Mass per unit
time
y(t) Mass B Mass per unit
time
z(t) Mass € Mass per unit
time
¥ Mass per unit m Dimensionles
time s
k Mass € Mass per unit
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time
a Mass per unit u Mass per unit
time time

Case-1I: Fuzzy Model

We assume that biological parameters are fuzzy
numbers represented by TFNs. Assuming the
biological parameters are fuzzy in nature, the crisp
model (1) becomes

= =(1-x/k) © axz
J-wzopfyosay
dz.

= =wixz® Py O &z ®ijiz(l —x/k) (2)

dt

where, %k, &5,8, &, M,&,fiare all triangular
fuzzy numbers.

Case- III: Defuzzified Model

We defuzzified the fuzzy model by using graded
mean defuzzification method. Then the above
model (2) is represented as following form

6(Z) = 6(Hx(1 - x/6 () © G(@)xz

6&) = 6(20 6B O GE) y

¢(E)=muopyoszona-xbH @
where, G( )’s are the defuzzified values of the

corresponding fuzzy numbers.
Case- IV: The Stochastic Model

In the study of the biological process the stochastic
models are the more realistic models. The growth
rate and natural death rate of prey-predator are
randomly changed by the natural disaster and
human disturbances. Hence the white noise is
considered to be the most important tool to
explain the randomly fluctuating phenomena.
Here the crisp model (1) is transformed into the
stochastic prey predator model. In this portion we
have described that white noise get into the whole
population dynamics. We have considered the
white noise perturbation to the intrinsic growth
rate of prey population y, natural death rate of
immature predator &, and natural death rate of
mature predator &,. That is y— y+6; H(t),

J. Sci. Eng., 2022, 2(2) 28
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—& > =g+ 6, Hy(t), —& = —&+ 63 Hs(b),
where the strength of noise are represented by
0,,8,, 65 and the mutually independent Brownian
motions or standard Weiner process are
represented by H,(t), H,(t), H;(t). A continuous
time Markov Chain f(t) can explain it and it takes
a finite value in the state space M =
{1,2,...3}.Then the model (1) reduces in the
following forms:

dx(t) =

@ [AF©) (1 - 75) -
a(ft)ztde+O1( F(£)x(D)dH1(E)

dy(t) =

[s(f®)z@®) — B(fF®))y(®) —
e1ftytdt+02( F(O)V(AH2(E)

dz() = 20 { [ m(F©)x@® = e:(F©) +
Wftl—xthkgt+L/tytdt+

F(O)2(0)dHs (¢)

03(
4)

We choose the generator F = (w;;),x, that can be
defined as

P{f+00) =jlIf () =1}
W”At + O(At),

_ ifi+j
- 1+ WUAt + O(At),

ifi=j
where, At is positive and w;;(= 0) represents the
transition rate which runs from i to j and the
condition applied },w;; =0. Considering
Markov Chain f(t) is irreducible. Above system
(4) becomes

_ 5 (129 _ (i
dx(t) = x(t) [7(]) (1 k(]_)) a(])z(t)] dt +

6, (Nx(t)dH, (t)

dy() = [s(Dz(®) = BNy @) — e (Dy@)]dt +
0, ())y()dH, ()
dz(t) = 2O { [ m()x(®) — &() +u() (1 -
Xthy+Lyede+03( ))z(t)dH3(¢) while jex.

This Markov Chain has unique stationary
distribution Q = {Q,, Q, ....Q,}. It has the solution
of the system of equation QF = 0. It satisfy the
condition }7; Q; = 1 and Q; > 0. We choose

n(F®) = {f @) - 2L,

(f©) = & (f©) - 2L,

29J. Sci. Eng., 2022, 2(2)

BUF®) = —e,(f©) - =YD
for simplification.

We prove the theorem with the help of the
following definition.

Persistence and Extinction:

>0 a.s. is

.. . 1§ g(s)ds
(1) If the condition liminf,_, =2 ,

satisfied then g(t)
persistence in mean.

(2) If the condition lim,,, g(t) =0 a.s. is
satisfied then g(t) is called extinct.

is called strongly

Theorem 1

i)  If the condition Y, Q;(w, (i) + L)) <0 is
satisfied then the prey population in the
environment is extinct.

ii) If the condition Y-, Q;(w, (@) + s(Dk()) <
0 is satisfied then the immature predator
population in environment is extinct.

ii) If the condition
21 Qi(ws (@) + mDa(@k() <0 is
satisfied then the mature predator

population in environment is extinct.

Proof: i) We have applied It6’s formula in first
equation of the model system (4), then we have

dinx(®) < (0, (F@®) + B(F®)))dt +
0, (f (£))dH, (t);

These gives

mx(O=Inx(©0) _ ol (FO)+B(r@®)lat + Jy 81(f () dHy (D) dt
t t t .

According to the ergodic theory of Markov chain
and strong law of large number, we get

lim, o sup ™22 < L, 0w, (i) + (D))

If the conditiony®,Q;(w,(@) +BGE) <0 is
satisfied then we have lim,,,x(t) =0 a.s. that
means prey population x(t) in the environment is
extinct.

ii) In analogous way, we have from the second
equation of the model system (4)


HP
Typewritten text
29


dIny() < (w2(f(®) + s(fO)k(f (©)))de +
6, (f (£))dH, (1);

This implies

Iny(©)=Iny©) _ JE@a(F@©)+s(F(O)k(F(©))d) N
t - t
Iy 02(F (©)dH(®)
t ’

Therefore
sk@).

If the condition Y-, Q; (w,(i) +s@k() <0 is
satisfied then we have lim,_,, y(t) = 0 a.s. Hence
immature predator population in environment is
extinct.

lim, ., sup X2 < T 0, (w, () +

iii) Again, we have got from the third equation of
the model system (4),

dinz(t) <
(ws(F®) +m(F©)a(FOI(F(©))) dt +
65(f (©)dH5(0);

This implies

mz©-nz©) _ (@07 ®)m(®)al®)k(r®))at N

t t
JE65(r(©)dHs ()
t

This gives
lim, .o, sup T2 < T Q; (w3 (1) + mDa(Dk()

If the condition Y, Q; (w;(@) + m(Da(Dk({)) <0
is satisfied then we have lim,,,z(t) =0 a.s.
Hence mature predator population in the
environment is extinct.

5. Dynamical study of the model:

In this section we describe the positivity,
boundedness of the system, equilibria and the
stability analysis of the model.

Positivity of the model

In this section, we desire to show that the solutions
of the system of differential equations (1) are
always nonnegative.

The vector formation of the system (1) is
V=0W(Q®) (5)

where, V(t) =(vy, 5, v3)T = (x(t), y(t), z(t))T, V (0)
=(x(0),y(0),z(0))" € R and

Mahato, Das, Mahato, Karmakar, Pal

@1 (V(©))
2 (V(®)
3V ()

eV ()=

;/x(l—%)—axz

52— By —e1y
mxz + By — €,z + uz(1 — x/k)

It can be shown that [¢;(V(£))]y,=0 = 0, (for i=1, 2,
3). For solving uniqueness of the system of
differential equations we use Nagumo’s theorem.
So any solution of (5) with initial point V(0) =
Vo € R} can be written as V(t) = V(t; V,), where
V(t)e RS for all t> 0. i.e., the solutions of the
system (1) remain non negative throughout the
region R3.

Boundedness of the system:

Theorem 2: All the solutions (x(t), y(t), z(t)) of
the system (1) with positive initial condition are
uniformly bounded.

Proof: Let us define the positive definite function
W as

W=x+y—-z

dW _ dx , dy dz

dt ~ dt = dt dt

=yx(l—%)—(a+m)xz—81y+(s+£2)z—
uz(1=3)

< 706(1—%)—(a+m)xZ—K1W—uz(1—£),

where K; = min(ey, (s + €,)), arbitrary constant.
Hence, %v + KW < ;oc(l —%) Therefore, we

. 1%
have the solution W < yx(K—k) as t— oo,
1

This implies that all the solutions are bounded if

X
the condition 0 < W < }/x(ll(—") holds.
1

Hence, all the solutions of the system are

uniformly bounded in Q = {(x, y, Z)ER3:0 < W <

~(1-3)
€1

+ ¢} for all ¢ is positive.
Equilibria:

Now, we desire to find the possible non negative
equilibrium points for the system and also to
analyze the stability criterion of these points. Let
the possible equilibrium points for the system are
given below:

J. Sci. Eng., 2022, 2(2) 30
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i)  the trivial equilibrium point Ff (0,0,0)

ii) the predator free equilibrium point
F3(k,0,0)
iii) the co-existing equilibrium point

@[k ok ok « _ {(g2=p)(B+e1)—Ps}k
F§(x*,y*, z*), where, x* = T Gredm)

* syl(B+ey)(km—e2)+Bs} . _ y(B+e)(km—ez)+Bs

Y = TaGrenttm-m ' 2 T a@rentm-m

The Jacobian matrix of the system (1) is given by

J(E) =
2xy uz
y—— —az 0 mz — =~
0 —(B+e1) B
—ax S mx — & +u(l— %)

Theorem 3: The trivial equilibrium point
F£(0,0,0) always unstable.

Proof: At the trivial equilibrium point Ff(0,0,0)
the Jacobian matrix becomes

/4 0 0
JFD) =0 =B +e&) B
0 s —&+u

Its characteristic equation is (y—2A){(A%+
LH+el+2—pd+f+c1—2+u—Lfs=0. Here, A=y is
the positive root of the above system at this
equilibrium point. So, the trivial equilibrium point
F£(0,0,0) is always unstable.

Local stability and Global stability of the
crisp model:

In this portion we explain the local stability and
global stability of all possible equilibrium points of
the crisp model (1) by the following theorem.

Theorem 4: If the condition &, > mk+
Bi holds then the system (1) is locally

asymptotically stable at predator free equilibrium
point F (k, 0,0).

Proof: At the predator free equilibrium point
F5 (k,0,0) the Jacobian matrix for the system (1) is

-y 0 0
JEDH=]0 —B-g B
—ak S mk — ¢,

The characteristic equation is

A+P[(A? —A(mk — g, — f — &) + £,6, — Pmk +
Le2—mbiel—Ls=0.

31J. Sci. Enq., 2022, 2(2)

The characteristic roots ared; = —y, 1,3 =

(mk—g;—B—e1) 4/ (mk—g;—B—£1)%—4 (g1 £~ Bmk+Be; —mke; —Bs)
2 .

Thus, if &, > mk + B‘% then all the eigenvalues of
1

the system at point F5 (k, 0,0) are either negative or
have negative real parts. So, the system becomes
locally asymptotically stable at F§. Otherwise, the
system will be unstable.

e
s, =2 0and t,6; + B(r; —1) =0 holds then the
system (1) are globally asymptotically stable at
predator free equilibrium point.

Theorem 35: if the conditions 7, =

Proof: Now, we construct a Lyapunov function
V(xy z)=14 f]:%dx +1, foydy + foz dz

Differentiating both sides with respect to t we get,

av x—KkY dx dy  dz
dt_l( ) Tt

x / dt dt
=7 (%) (}/x(l —%) —axz) + 1,(sz — By —
&1 y+mxz+fy—e2 z+puz(1-x/%)

12
=—Tl@ +xz (m —ar, — E) —-y(Bt, +

k
12e1—ff—z(e2—pu—s12)

km—u
= ak '

&—U—5ST, =0 then‘;—‘t/SO.

We choose Bt, + 1,6, =B =0,

Therefore, the predator free equilibrium point is
globally asymptotically stable.

Theorem 6: If all S;>0,i =1,2,3 and S$;S, —
S; > 0 condition holds then the system (1) is
locally asymptotical stable at the equilibrium point
F5 (x{,¥1, 2{).

Proof: At the coexisting equilibrium point
F$(x*,y* z*) the Jacobian matrix becomes

J(F5) =
}/—2%*—0:2* 0 mz*—%
0 -B-& B
—ax”* s mx* —¢&, +u(l —%*)

The characteristic equation is

P =23 +8524+85,1+5,=0, (6)
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where, S; = —(7/—2%—012*—[)’—51+ mx* —

& +u—7)),

SZ=—{(mx*—£2+u(1—’%))(ﬂ+el)+ﬁs}+

(7—2%*—az*)(mx*—ez+u(1—’%)+

AXF MZF—UZH—y—=2Vx+k—az+f+€1,

S; = —[(}/— 2}%— az*) {(—[5’ — &) (mx* —&+
UL =1+ =fSs)}+ mzr—puz+k—ax+f+1.

Here, if all S; > 0,i = 1,2,3 and S;S, — S; > 0 then
it satisfies all the conditions of Routh Hurwitz
criterion. Hence, all of its roots have negative real
parts and if coexisting equilibrium F§(x*, y* z*)
exist then it is asymptotically stable.

Theorem 7: if the co-existing equilibrium point is
feasible then it is globally asymptotically stable.
Proof: Taking a Lyapunov function

yy=y"
dx+P1fy* " dy +

x x—x*

o(x,y,2) = [,

Plzzz—z%z07

*
X

where, P; and P, are positive constants. It is to be
determined in following steps.

Both side taking time derivatives of o we have,

dcr_x—x*dx

y—y*'dy z—2z"dz
dt «x

ath S wtr Y x

=(x —x)[-s(x—x) —a(z-z)] - P (B +
)W =y +mPy(x —x*)(z — z°) — P&p(z —
z*) — Pf{—”(x —x"Yz—z")+ (sP + BP)(y —
yI)z—2z")

= —%(x —-x")? - (—sz +a +PZT”) x—x9(z-
z¥+ SP1+FP2y—yrz—z% —P2
&(z—2)-P(B+e)y—y)?

ka

Bka _
—— and P,= ——

" Stmk—p)
(s > 0,mk — u # 0) then we have‘;—‘; <0.

If we choose P, =

So, the coexisting equilibrium point F§ (x*, y*, z*) is
globally asymptotically stable.

Hopf Bifurcation Analysis:

In this part we explain the possibility of Hopf
bifurcation in the equilibrium point F§(x*,y*, z*)
with the help of parameter q. We choose A(q) =

Mahato, Das, Mahato, Karmakar, Pal

a(q) +ib(q) being the eigenvalue of the
characteristic equation A3+ FA2+GA+H =0
which is gained from the Jacobian/(F§). Putting
the value of 1 We have

a® —3ab?+Fa?—Fb*+Ga+H=0 2]
and
3a?b— b3+ 2Fab+Gb =0 8)

We substitute g = g, such that a(g.) = 0. We have
purely imaginary solution for the characteristic
equation (4). Now we put a =0 in (7) and (8).
Then we have

—Fb>+H=0 (9)
and
—-b3+Gh=0 (10)

From (9) and (10) we get b(q.) = /G(q.) and
F(qc)G(QC) - H(Qc) =0.

Therefore, eigenvalues of the equation (6) are
21(q0) = —F(qo), 22(q.) =iy G(qe), A3(q.) =
—i\/G(q.) atthe point g = q..

Theorem 8: The system (1) enters into Hopf
bifurcation around interior equilibrium F§, when
the value of q passes its critical value q.. At q = q,
the system underlies Hopf bifurcation in the
following condition

) Flq)G(q) —H(g) =0
i) Flg,) =4 ;‘” +6(q0) e ;‘” - 8ad ;‘” # 0 where

G(q.) # 0.

Proof: We assume that the formations of the roots
of the characteristic equation (6) are 2,(q.) =

—F(q.), 2;(q.) = i\/ G(qc), AS(QC) = _i\/ G(q.) at

the point q = q,.

For all values of g, the root of the characteristic
equation (6) becomes

A1(q) = a(q) +ib(q)
A2(q) = a(q) —ib(q)
A3(q) = —F(q)

Performing the transversality condition, we get the
following at point ¢ = g,

% (Re(l(q))) #0
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Now, differentiating equation (6) and (7) with
respect to g at the point q = g, and then we put
a = 0, we have

da(ac) ab(qc)
Al(QC) qu: +A2(QC)TLI:+A3(QC) =0
da(qc db(qc
Bl(qc)—‘;(:c) + Bz(‘lc)% +Bs(gc) =0 (10)

where, 4;(q.) = —3b%(qc) + G(q.), B1(q.) =
Zb(qc)F(qc)v Az(qc) = _Zb(qc)F(qc): Bz(qc) =
_?’bz(qc) + G(qc):

dH dF(
43(q0) = T2 = b*(q.)

qc) _ dG(qc)
dqc 'B3(QC) - b(Qc) dqc

Now solving the system (10), we have

At the point q = ¢,

dRe(2@)) _

dq
d d d
~2F (40)h* (@) 50— (=357 (40) +6(00)) 12 p? (o) 5l

(=3b2(qc)+G(qc))?+(2b(qc)F (a0))?

We put the value of b and the above expressing
shows that dd—q (Re(A(q))) # 0, at the point g = g,

dG dF dH
IfF(q.) d:’;) +G(q.) —d;q:) - —di‘) # 0 and
G(qe) #0

Hence the transversality condition holds and this
implies that Hopf bifurcation occurs at g = q..

Complete the proof.

6. Numerical Results:

The global dynamics of system (1) is investigated
numerically using MATLAB odeg45 codes and
taking the input data of the parameters from Table
2. To study the feasibility of the fuzzy model of the
concerned prey predator model, all biological
parameters are hypothesized to be imprecise in
nature and these are considered as triangular fuzzy
numbers. Using MATCONT we indicate the Hopf
point, branch point and the limit cycle in
bifurcation scenario. The following numerical
examples are considered to discuss the theoretical
study.

Result-1 Crisp Model In this section we have
applied the following parameters which are used
above system. We have got the interior equilibrium
point F§(1.37, 0.7455, 1.5674) by the value of crisp
model involved parameters which are taken from
Table 2. Fig. 2 has been drawn for the equilibrium
points. The equilibrium is locally asymptotically

33 J. Sci. Eng., 2022, 2(2)

stable. We have represented in Fig. 3 for phase
space diagram in both crisp environment and fuzzy
environment. We have studied the bifurcation
analysis of the system (1) for the parameters s
and f. The existence of the periodic orbit
bifurcating from equilibrium point of the system
(1) is examined. We have shown the continuation
curves of the equilibrium with the variation of
parameter s in Fig. 4. From Fig. 4 it is seen that
Hopf point is in the positive quadrant. The Hopf
point (H) is situated in
(x,y,2,5) = (0,2.40287,1.6315796,0.03818) and
correspond-ing eigenvalues are
(—4.91,4i0.000573208). We have the first
Lyapunov coefficient 0.024924. This gives
subcritical Hopf bifurcation which represent
unstable limit cycle and Dbifurcation from
equilibrium in there. Also, we have the branch
point

(x,v,2,5) = (0,2.402871,1.631572,6.038182). Ag-
ain, we have represented the continuation curves
of the equilibrium with the variation of parameter
B in Fig. 5. We have the Hopf point (H) which is
located in
(x,v,2,B) = (0,0.523944, 1.631579, 2.522364) and
corresponding  eigenvalues are (—6.88236,
+i0.00109632). The first Lyapunov coefficient is
0.05713841. This represents subcritical Hopf
bifurcation. We have observed branch point
(x,y,2,B) = (0,0.523944,1.631579, 2.522368) in
the Fig. 5.

Result-2 Fuzzy model

Since our environment is constantly changed by
the natural disaster, human activities etc. The
biological parameters are fluctuated due to it. So,
we have considered that all the model involved
parameters are taken as triangular fuzzy numbers.
We have shown crisp value and corresponding
fuzzy value of the parameters in the Table 2. We
have drawn the solution curve for the fuzzy value
in the Fig. 2(b). From figure it is observed that
mature predator population predate both the
population prey and immature predator in the
environment. So, the mature predator will be
stronger than other population. The system (2) has
equilibrium point around F§(1.3763, 3.2182,
1.567). Fig. 3 (b) represents the phase space
diagram for different values of initial value in the
fuzzy environment.
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Figure 2: profile of population of model
system (1) around interior equilibrium point
in the (a) crisp environment (b) fuzzy
environment.

Figure 3: Phase space diagram for the model
system (1) in the (a) crisp environment (b)
fuzzy environment

Result-3 Defuzzified model

Firstly, we have formed crisp model then we have
transformed to the fuzzy model. Again, fuzzy
model has been converted to the defuzzified model
by using the GMIV formula. The defuzzified values
of the model involved parameters have been
shown in the Table 3 for different optimism w.
From Fig. 6 it is observed that all the population
has significantly changed in population. So, from
these figures we have concluded that all the species
in the environment has been influenced by the
changing parameters.

|
J
J

s

1

" 1 2 3 4 5 & 7 8§ § 0
s

Figure 4: Continuation curves of the
equilibrium with the variation of
reproduction rate of mature predator s (H
represents Hopf point and BP represents
branch point)

Result- 4 Stochastic Model

The solution of the stochastic differential equation
model can be determined by the Euler-Maruyama

Mahato, Das, Mahato, Karmakar, Pal

method. We have used the Euler-Maruyama
method for the system (4) and we have obtained

Figure 5: Continuation curve of the
equilibrium with the variation of translation
rate from immature predator to mature
predator f. (H represent Hopf point and BP
represent branch point)

Crisp [value Fuzzy value
paramet param
ers eters
y 155 7 (1.395, 1.55, 1.705)
k 35 k (31.5, 35, 38.5)
o 0.95 a (0.855, 0.95, 1.045)
s 1.95 § (1755, 1.95, 2.145)
0.55 g (0.495, 0.55,
B 3.55 g 0.605)
€ 0.4 # | (8.195,3.55, 3.905)
m 0.85 > (0.36,0.4,0.44)
2
& 0.04 i | (0765,0.85,0.935)
M (0.036, 0.04,
0.044)

Table 2: Values of the parameters

xG +1) = x(0) + () (7/(1 -0y _ az(i)) h+
6,x()Vh N(0,1);

y(i+1) =y + (sz(@Q) — By (@) — &ry(i)h +
8,y(OVh N(0,1);

z(i+ 1) = z(0) + z(@) (mx () — &, + u(1 — x(0)/k) +
By()h + 65z()Vh N(0,1);

for i=12,..n and x(0)= 0.8, y(0) = 0.6,
z(0) = 0.4, y=1.55, k=35, a =095, s =1.95,
B = 0.55, ¢ =3.55, m=0.4, & =0.85, u=0.04.
The number of steps in the mesh N = 50000,
T =10, h=T/N . The values of the parameters
8,, 6,, 05 are taken hypothetically. We have studied
above for the stochastic prey predator system (a)
the phase portrait of three species prey (x),
immature predator (y), mature predator (z) in
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different noise and (b) the evolution in time of the
species x, y, z. In Fig. 7 we have shown the phase
portrait for the stochastic prey predator system.
The Fig. 7 and Fig. 8 represents the limit cycle on
equilibrium point. If the limit cycle is unstable
then the population becomes extinct. From Fig. 8
we have observed the significant fluctuation of the
population for the different noise. From the Fig.
8(a) and Fig. 8(b) It is seen that all the
population x(t),y(t),z(t) are extinct after few
days. From Fig. 8(c) we have seen all the
population x(t), y(t), z(t)

v

Figure 6: Profile of population for the
different degree of optimism w
Param Fuzzy value Defuzzified value
eters w = 0.3 w
=05 w
=07 w=09
14 (1.395, 1.55, 1.52 1.55
1.705) 1.57 1.59
k (31.5, 35, 38.5) 34.5 35
35.46 35.93
a (0.855, 0.95, 0.937 0.95
1.045) 0.962 0.975
s (1.755, 1.95, 1.924 1.95
2.145) 1.976 2.002
B (0.495, 0.55, 0.542 0.55
0.605) 0.557 0.564
& (3.195, 3.55, 3.50 3.55
3.905) 3.59 3.644
m (0.36, 0.4, 0.394 0.4
0.44) 0.405 0.410
& (0.765, 0.85, 0.838 0.85
0.936) 0.861 0.872
u (0.036, 0.04, 0.0394 0.04
0.044) 0.0405
0.0410

Table 3: Defuzzified value of the parameters

are permanent for different noise 6, = 1.7,6, =
1.5,0; = 1.8. In Fig. 9 indicates the evolution in
time of the predator and prey with increasing
sequence noise. From Fig. 9(a) we have observed

35J. Sci. Enq., 2022, 2(2)

that x(t), z(t) are permanent and y(t) is extinct for
the noise 6, =0, = 6; = 1.2, from Fig. 9(b) we
have got x(t) is extinct but y(¢),z(t) are
permanent for the noise 6, = 6, = 6; = 1.7 and
from Fig. 9(c) we have y(t), z(t) are extinct for the
noise 6; = 1.7,0, = 1.5,6; = 1.8. When the noise
6, = 6, = 6; = 1.2, all the curve follows closely the
deterministic curve. When 6, = 8, = 6; = 1.7 the
system becomes oscillates with presence of the
noise. Also, the system exhibits oscillation for the

different noise 6, = 1.7,0, = 1.5,6; = 1.8.
Sensitivity Analysis of the parameters:
Sensitivity of k

Here we have discussed sensitivity of the carrying
capacity k. (i) For the large carrying capacity
k = 350 (Fig. 10(a)) we have observed that all the
curve becomes oscillation. It is concluded that all
the population exist in the environment. (ii) For
the moderate value of carrying capacity k =
35(Fig. 2(a)) we have determined that the system
is locally asymptotically stable around its
equilibrium point.

(iii) When carrying capacity k = 0.35 (Fig. 10(b)),
then we conclude only prey population is exist and
other population becomes abolished in the
environment.

Ve eyt e

u

(T

[T I T I TR TR 1}
It et

Figure 7: The phase portraits of (a) mature
predator with respect to prey (b) immature
predator with respect to prey with noise
0, =60, =0;=2.0 (c) mature predator with
respect to immature predator with different
noise 6; = 1.7,0, = 1.5,0; = 1.8.

Sensitivity of parameter s

In this portion we have examined the sensitivity of
the parameter s. When s > 6.5, the solution curves
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of the system (1) do not exist. (i) For large value of
the reproduction rate of mature predator s (Fig.
11(a)) the prey population vanishes in the
environment. (ii) For the moderate value of s (Fig.
2(a)) all the species are coexisted in the nature.
(iii) It is evident from the Fig. 11(b) prey
population and mature predator population are
coexist in the environment.

i e s e
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e | —m |
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N N
t i
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2 2
A
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Figure 8: The evolution in time of the
predator and of the prey with noise (a)
8, =0, =0;=3.0,(b) 6, =6, =6; =3.5 and (¢)
0, =1.7,0, = 1.5,6; = 1.8
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Figure 9: The evolution in time of the
predator and of the prey with increasing
sequence noise (a) 6, =6, =65 =12 and (b)
0,=0,=0,=17 (¢c) 6,=17,6,=150;=18
(blue line represent x(t), red line represents
y(t), green line represents z(t))
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Figure 10: solution curves for (a) very large
carrying capacity k = 350 and (b) low carrying
capacity k = 0.35.
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Figure 11: Solution curves (a) for large value
of s = 6.0 and (b) for low value of s = 0.05

Sensitivity of the parameter u

In here we have investigated that the solution
curve does not exist for maximum growth rate for
mature predator p > 0.6. For moderate value of
u = 0.04 (Fig. 2 (a)) and low value of u = 0.005
(Fig. 12 (b)) we have seen that very slight
deflection arises between prey and mature
predator population. But immature predator
remains unchanged.

0 L] L] L] n ] ]
T

Figure 12: Profile of population for (a)
u=0.4 and (b) u = 0.005

7. Conclusion

The model formulation section is divided into four
subsections, they are namely crisp model, fuzzy
model, defuzzified model and stochastic model.
We take all biological parameters as triangular
fuzzy numbers (TFNs) in the fuzzy model. With the
help of graded mean integration technique, we
convert the fuzzy prey predator model to
defuzzified model. We illustrate the crisp model as
stochastic model with the help of Markov chain
process. Persistence in mean and extinction of the
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system are examined in the stochastic prey
predator model subsection. The positivity,
boundedness, equilibrium point, local
asymptotically stable, global asymptotically stable
of the interior equilibrium point of the model,
Hopf bifurcation analysis are discussed. We
describe the crisp model example, fuzzy model
example, defuzzified model example and stochastic
model example in the numerical results portion.
Solution curves around interior equilibrium point,
phase space diagram of the model (1) is drawn in
both (crisp, fuzzy) environments. Solution curves
for the different optimism w are drawn. Slight
fluctuation in the figure is observed. The existence
of Hopf point (H) and branch point (BP), limit
cycle is looked into. In our analytical results we
have found that the white noise perturbation plays
an important role in extinction as well as
persistence of prey and predator populations. We
perturb the model with respect to white noise
around the intrinsic growth rate of prey and death
rate of predator populations. Graphically we have
shown the limit cycle of mature predator with
respect to prey, immature predator with respect to
prey with the noise 6, = 9, = 6; = 2.0 and mature
predator with respect to immature predator with
different noise 6, = 1.7,0, = 1.5,0; = 1.8. also we
represent The evolution in time of the predator
and of the prey with increasing sequence noise
0,=60,=6,=12, 6,=0,=0,=17  and
0, =17,0, =15,0; =1.8 (blue line represent
x(t), red line represent y(t), green line represent
z(t)). At last, we describe the sensitivities of the
parameters k, 4, s with taking their large, moderate
and low value. To improve the research area of the
mathematical biology we may consider this type of
fuzzification, defuzzification method, stochasticity
in different models. There are some investigations
for stochastic ecological models. It is cabbalistic
for realistic world. It is more eagerness to study
evolutionary dynamics of stochastic evolutionary
model. So, we decide these for future work.
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