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Abstract

A meromorphic function on D € C is a ratio of
analytic ~ functions with  denominator
identically non zero on D. Poles of such
functions arise from zeros in the denominator
where the numerator remains non-zero.
Determining all poles is a complex task, thus
identifying a potential pole region becomes
essential. This research aims to establish a pole
region for selected meromorphic functions,
supported by examples and accompanying
figures to validate the findings.
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1. Introduction, Definitions and
Notations In 1816, Gauss initially presented
a fundamental result concerning the location
of zeros of polynomials [7]. Consequently,
numerous scholarly articles exploring this
topic have been published in the academic
literature (cf. [1],[2],[3],[7].[8] & [11]).
However, it's important to emphasize that
more results of a similar nature for the
location of poles of meromorphic functions are
not available, except for a limited partial
reflection observed in [5].

A meromorphic function f(z) analytic within
the annular region defined by r; < |z| <, can
be expressed as f(z) = Y eza,z" where a, =

L L9 ge neg with T'={&|¢]=r} and

2i Y T fn+1

r<r<n.

The primary objective of this paper is to
introduce a region that encompasses the poles
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of a meromorphic function under various
conditions, utilizing the coefficients a,,.

It's important to note that this paper does not
delve into standard theories, as they are
available in references [9] & [15]. The
following section provides some well-known
definitions for clarity.

Definition 1.1. [6] The Nevanlinna
characteristic function T(r,f) for a
meromorphic function f in the finite complex
plane C is defined as:

1 (%" )
TG =5 [ logt|f(re®)ldo
0

Tt f)
v B

where n(t, f) represents the count of poles of
the function f within the region |z| < t and

log" x =log xwhenx >1
=0 when0 <x <1

Definition 1.2. [6] The order of a
meromorphic function f is defined by

— i log T(r, f)
PP logr

Definition 1.3. [4] For a meromorphic
function f having order zero, the quantity p* is
defined by

Definition 1.4. [13] A continuous function
L(r) > 0 is said to be inereasing slowly if
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. L(ar)
lim

—1va>0.
ros () @

Definition 1.5. [14] For a meromorphic

function f, its L-order p* and L*-order p*” are
defined as

log T(r, f) :
L= limsup ———= and L
P ISP g (rL(r)] TCP
— i log T(r, f)
~ e log [re ]

2. Lemmas

In this section we present some lemmas which
will be needed in the sequel.

Lemma 2.1. [12] For any complex number ¢;

with |arg ¢; =8| <y < %for some real y and 6,

the following inequality holds:

|Cj - Cj—1| < ll¢jl = l¢j-1llcos ¥
+ (|| + |aj-1|)sin y.

Lemma 2.2. [1] Let g(z) be andyticin |z]| <t
with g(0) = 0,9’ (0) = a and |g(2)| < K for
|z| = t. Then for |z| < t,

K|z| K|z|+t?|a|
t2  K+|al|z|

lg(2)| <

3. Theorems

In this section, we present the main results of
our research. These results significantly
advance our understanding of the distribution
of poles in meromorphic functions,
particularly in the context of slowly changing
functions. These offer valuable insights and
solutions to address the challenges within this
field, opening doors for further exploration
and practical applications.

Theorem 3.1. Let a meromorphic function
f(2) on D < C be of finite L-order p*(= 1) with
f(2) = $2- 02" + TrZqapz” for Ry <|z| <
R,. Also let for some real numbers y and &,

|arg a; —5| <y< g,j =0,1,.2,..

and

PL|a0| > Ryla,| = R%|a2| =
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Then poles of f(z) reside in D; U D,
where D ={zeD-R <|z|<L} D, =
1 e = lpao—Rzasl)’ 72
{z € D:|z| <R}

and B = (cos y + sin y)ptlay| +
2sin yz;?"=1|aj|R2.

Proof. Clearly, lim a,R} = 0 and
n—oo

lim a,R} = 0.

n—-oo

Also, for R; < |z| < R,, it follows that

If (@] < |1Zn=0 anz" + X721 anz". (1)
Now, for |z| < R,, we get that
(z = Ry) Xn—o anz"

= —Ryap + (ay — Ra)z + X732, (aj_1 -
Rzaj)Zj

= —R,a, + (ay — play + ptay — Rya;)z +
%522 (@jo1 — Ry))7
= —Ryay + ag(1 = p")z + (p"ay — Rya)z +
%522 (ajo1 — Rya)7

= —R,a,+a,(1 —pH)z+ G(2). 2
Using Lemma 2.1, it follows for |z| = R, that

1G(2)| < |ptap — Ryaql|z]
[oo)
+Z laj—y — Ryaj||z)’
=2

< |p*ap — Rya;|R, + Pyi |af—1 -
R,aj|R,
{Iptlagl—Rzlay|| cosy + (ptlae| +
Ryla,|) siny}R, +
3722 {[la-sl=Ralas||cosy +

R2|aj|) siny} Ré'

IA

(laj +

= (p"lag| = Rzla; DR, cosy +
(PL|ao| + Rzla; R, siny +
2722 (laj-1| = Ra|aj] )R cosy

+ 3" (lagoa| + Rolay )R] siny
j=2
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= (cosy +siny)p*lao|R;

[oe]

+ 2R, sinyz |aj|Rg
j=1

= R,B where B = (cosy + siny)p’|a|

+2 sinyz |a]~|Ré.
j=1

Now, G(z) being analytic in |z| < R, with
G(0) =0,6'(0) = (p'ag — Ryay) and |G (2)| <
R,B for |z| = R,, we obtain by Lemma 2.2 that

BR,|z| BR,|z| + R5 | p*ay — Rya4|

G <
|G(2)] RZ BR, + |ptay — Rya,4||z|

_ B|z|{B|z| + R;|p"ay — Rya,}
BR; + |ptay — Rzay |l 2|

Hence for |z| < R,, we get from (2) that

(Z - RZ) Z anzn
n=0

< |=Rzao + ao(1 = p*)z|
B|z|{B|z| + R;|p*ay — Rya;1}
BR, + |ptay — Rya4]|z|

(Rylaol + lagl(p* — D|z])(BR, + |ptay — Ryaq|lz]) +

B|z|{B|z| + R;|p"ay — Rya;1}

1
< las] +1(as — Ra)I
112
+|(a_3 — Rya_,)| |;| + o
1
<la_q| + (la_;| + R1|a—1|)R_+
1

1
(la_sl + R1|a—2|)R_ + o
1

=2(Jay| + 52+ B2y )

-2
Ry R?
=2R; Y721 lan|RT =C.

Therefore, for |z| > R,

—00

C
Z anzz" <

“|lz| - R
. |z| — Ry

4

Hence, by using (3) and (4), for R; < |z| < R,
it follows

from (1) that

|f (2)]
(Rylag| + laol(p* = D|z)(BR; + |p*ay — Rya4l|z])
+B|z|{B|z| + R;|p"as — Rya,[}
(Ry — 1zD(BR; — |p*ag — Rya4112])

<
BR, + |ptay — Rya4]|2]

Therefore,

oo
n=1

(Rzlao| + |a0|(PL = 1D|z|)(BR; + |.0La0 — Rya41l2|)

+B|z|{B|z| + R;|p"ay — Rya, |}

<
(Ry — 1z])(BR; + |ptay — Rya4llz])

(Rylaol + lagl(p* — DIz])(BR; + |ptas — Ryaqllz])

+Bz|{B|z| + R,lp"ao — Rya, |}

(R; — 1z])(BR; — |p*ay — Rya4lz 1)
Again, for |z| > R,, we have
|(a —Ry) XnZ-q agza™

1 1
= |a_1 + (a_, — R1a—1); + (a_3 — R1a—2)z_2 +
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+
|z] — Ry

(Iz] = RD{(R,lao| + laol(p* — 1)|z])(BR; + |p"as — Rya4||z])
+B|z|(B|z| + R,|p"a, — Ryay])}

< +C(R, — |z])(BR, + |p*ag — Ryaq Il z[)
B (R; — 1z])(BR; — |p*ao — Ryaq||2])(|2] — Ry) .

Therefore,

1 . L
i@l > 0if (R, — [zD(BR, — |p*ag — Rya4|
“1zD(z] = Ry) > 0.

. (Bbw, for |z| > R,, it follows that % > 0if

(BR, — |p*ay — Rya4].|z|) < 0

' oo if |z| > BR;
if|z| > —FF—F—.
If (@) | | ptag — Rya4|

ie.,

1 . .
Hence zeros of ® reside in

R, < |z| < BR,
z| < .
2 |pta, — Ryaq|



As f(z) is analytic in R, < |z| < R,, poles of
.. _ ) BR3
f(2)liein D; = {z ED:R, <|z| < 7”7%0_}?2‘11'}.

Now, for |z| < R; < R,, we se that

1
If (2]

> O if (BR2 - |pLa0 - R2a1||Z|) < 0.

Consequently, poles of f(z) reside in D, =

{z € D:|z| <Ry}.

Combining both the cases D, U D, is the region
of poles of f(z).

Remark 3.1. Taking f(z) as a rational
function and L(r) = log r, p* = 0. On the other
hand, p* = 1. Keeping all these in mind, the
following theorem may state for meromorphic
functions with p* = 0.

Theorem 3.2. Let a meromorphic function
f(2) on D < C be of finite order p*(= 1) and
f(2) = ¥azoanz™ + XnZqanz" for Ry < |z| <
R,. Also let for some real numbers y and &,

|arg a; —5| <y< g,j =0,12,..

and
p*lagl = Rylay| = R3lay| = -

Then poles of f(z) reside in D; U D,

o . B'R, o
where D] = {z ED:R, < |z| £ 7|p*a0—R2a1|}’D2 =
{z € D:|z| <Ry}
and B’ = (cosy + siny)p*lay| +
2siny X72.4|a;|R;.

Theorem 3.2 can be proved as Theorem 3.1
and therefore its proof is excluded.

Remark 3.2. The following example with
related figure ensures the validity of Theorem
3.2.

Example 3.1. Let

1

& =i er s
Now for 2 < |z| < 5, the Laurent's series
expansion of f(z) is
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23+ 15i 23+ 15i

20X 26X5 29x26x52°
23 + 1bi

052"
29 X 26 x 53
+81—15i1 115+ 75i 1

29%26 2z 20x26 22

f(2) =

Here,
28 + 154 _ 23+ 154

%= 3%x26x5 1T T23x26x5?
and p* = 3.

Taking R, = 2.5, R, =4, y = g and § = 0, we

see that all the conditions of Theorem 3.2 are
satisfied.

Now,

B" = (cos y + sin y)p*lay| + 2sin y ¥72, |a]-|R£

3 2

= |23 + 15i] +
29%26X5 29x26X5
234150 23+150 |
nd [p*ay — Rya4| = |
and [p*a, 2a1] 3 29X26X5 29x26x52|

Hence by Theorem 3.2, poles of f(z) reside in
{zEC:|z| <25} U{z € C:4<|z| <1143}

y

N

4<|z|s 1143

ﬁﬁk 2.5
Q

Figure 1: Distribution of the

23+15i
oles of f(2) = —
p f( ) 29%26X5
23+15i 23+15i
> ZZ —_— e +
29%26x52 29x26x53

81-15i1 . 115+75i 1
29%X26 z 29%26 z2

Continuing the discussion, the next theorem
focuses solely on the real part of the
coefficients of the analytic part of the Laurent
series expansion of meromorphic functions.

Theorem 3.3. Let a meromorphic function
f(2) on D < Cbe of finite L-onder p’ (= 1) with
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f(2) = ¥r=oanz™ + LnZqanz" for Ry < |z| <
R2‘ If a]- = a’j + lﬁ],j = 0,1,2, ..and

0 < plag = R,y = R0y > -+
Then D; U D, is the region of poles of f(z)

_ . __ MRy -
where D; = {z € D:R, < |z < pLOLO_RZ%},DL; =
{ze€D:|z| <R}

and M = pla, + 22 |8;|R].
=1
Proof. Clearly, lim a;R,) =0, lim B;R}, = 0
j—oo j—oo
and lim a;R) = 0.

jo—o

Now, for |z| < R,, it follows that

(z — Ry) Xn=0 @nz"™ = —Ryaq + (ag — Ryay)z +

X7z (41 — Roqy)2!

= —Ryay + (@ — Ryay)z + i(By — Rzﬁl).z +
Y52 {(aj-1 = Roay) + i(Bjo1 — RoPy)}2’

= —Ryay + (ag — ptay + ptag — Rya,)z +
i(Bo — R2p1)

+3%2, (@1 — Roy) + i(Bjo1 — R2PB;) )2

= —R,a,+ (1 — pHayz + (p*ay — Rya,)z +
{(Bo — R2B1)z + X522 {(%‘—1 - RZaj) +
(B — RoBy)} 70

= —R,ao + (1 — pMagz+ H(z). (1)
For |z| = R,, we have

|H(z) | < |PL ag — Ry aq ||z| + |Bo — Rz By l1z] +

(oo} i (oo}
PR A EES S [
j=2 Jj=2

Rapj Izl

< (pLao — R2a1)R2 + (1ol + R2IB1DR, +
27z (41— Re@))Ry + X725 (|6 +
R; |B;[)R;

= PLaoRz + R3|Bol + 2R, ZTQ |ﬁj|R£

= MR, where M = pla,, + |Bol +
2372 |B|RS.
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As H(z) is analytic in |z| < R, with H(0) =
0,H'(0) = (p* @y — Rya; ) and |H(2)| < R,M
for |z| = R,, we get by Lemma 2.2 that

MR;|z| MR,|z| + R | p*ay — Ry, |
RZ MR+l pla, — Rya, | |z

_ M|z|[{M|z]| + Ry(p"ay — Rya; )}

MR+ (play — Ryay)z]

|H(z)| <

Hence for |z| < R,, it follows from (1) thut

[(z — R) Y=o anz"|

< | =Rya+ (1 - pMay
M|z|{M|z| + Rz(PLa’o —Rya,)}
MR, + (ptag — Ryay)|z|

< Rylagl + (p* — Daylz|
M|z|{M|z| + Rz(PLa’o —Rya,)}
MR, + (ptag — Ryay)|z|

{Rylao| + (.DL — Daylz[}{MR, + (PLao — Ryay)|z|}
+M|z|{M|z] + R,(p"ay — Rya;)}
MR, + (ptag — Ryay)|z|

Therefore,

z a,z"

n=0
{Ralaol + (p* — Daolz}IMR, + (pag — Ryay)|z 1}

< +M|z|{M|z| + R,(p" g — Ry1)}

N (Ry = |1zD{MR; + (ptay — Ryay)|z|}

{Rzlao| + (p* — Daylz}IMR, + (p*ay — Ryay)|z I}
+M|z|{M|z] + R,(p"ay — Rya)}

= (R, — [ZD{MR; — (pratg — Ry}

Now, for |z| > R,, we get from (4) of Theorem
3.1 that

—00

n=-1

<

where C

|z] — Ry

— 00

= 2R, ) layR}. ©)

n=-1

Hence, we obtain for R, < |z| < R, that

(2)



[oe]

n=0

—00

n=-1

If (@) <

{Rzlao| + (p" = Day|z|{MR, + (p"ag — Rya1) |21}
+M|z|{M|z] + R,(p"ay — Rya;)}

= (R, — [Z)(MR; — (ptag — Ryay)z]}

c
|z| —

Datta, Molla
0<p*ay = R,a; = R3a, >

Then poles of f(z) reside in D U D;

M'R, ,
* }1D4 =
prag—Rza;

{zeD:|z| <R }and M' = p*a, +
2371 |B|R;-

where D} = {z €ED:R, <|z| <

The proof is similar to Theorem 3.3.
Remark 3.3. The following example with
related figure justifies the validity of Theorem

3.4.
(Iz| = RDI{Rlaol + (p" — DaolzIH{MR; + (p*ay — Ry,)|z|}

+M|z|{M|z| + R,(p"ay — Rya;)}]
C(Ry — 1z)(MR, — (p"ag — Ryay)|zl)

Example 3.2. Let
1

<
B (Iz] = R)(R, —

From (4), we see that

> 0if (|z] — R (R, —

— (ptay — Ryay)|z|} > 0.

1
If @) |z){MR,

Now, for |z| > R,,

> 0if MR, — (p*ay — Ryay)|z| < 0

1
If @I
MR,

> 0if |z] > .
ptay — Riay

If( )|

1 . .
Hence zeros of @ residein R, < |z| <

MRy
plag—Riay

R, <|z| £

and consequently poles of f(z) in

MR,
plag—Riay’

Also, for |z| < R; < R,,

> 0 if {MRZ - (pLao - R2a1)|2|} < O.

1
|f (2]

Therefore, poles of f(z) reside in |z| < R;.

Thus the theorem is established.

The forthcoming theorem shares similarities
with the previous one and is applicable to
meromorphic functions with p* = 0.
Theorem 3.4. Let a meromorphic function
f(2) on D ¢ C be of finite order p*(= 1) and
f(2) = Znizoanz™ + TnZ 1 anz" for Ry < |z| <
Ry.Ifaj = a; +ip;,j =0,1,2,.. and

|zD{MR, — (ptag — Ryay)|z|}

f@) =

z-1Dz-2)3-2)

Now, for 2 < |z| < 3, the Laurent's series
expansion of f(z) is

- +1 P L L I
fz) = 52t 2z " 222

Here’ 1?1 = 201, R2 = 299, ag = %; a, = 1_18and

p*=3.
Now,
M' = pao+ 237 |B)[R,
1 M'R,
=— and ——— ~ 448
2 p*ao —_ R2a1

Hence by Theorem 3.4, the region for poles of
f(z)is

{z€C:|z| <2.01}U{z € C:2.99 < |z| < 4.48}.

14
299<|z]< 4
7=1 ) 733 X
| 41<\201 2
Figure 2:
Distribution of

poles of 3 + iZ +

Sz 4. + e
54
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Remark 3.4. Theorem 3.1
and Theorem 3.3 are also valid
for meromorphic functions
with p%” > 1.
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